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a b s t r a c t

A linear stability analysis of the basic uniform flow in a horizontal porous channel with a rectangular cross
section is carried out. The thermal boundary conditions at the impermeable channel walls are: uniform
incoming heat flux at the bottom wall, uniform temperature at the top wall, adiabatic lateral walls.
Thermoconvective instabilities are caused by the incoming heat flux at the bottomwall and by the internal
viscous heating. Linear stability against transverse or longitudinal roll disturbances is investigated either
analytically by a power series formulation and numerically by a fourth order Runge-Kutta method. The
special cases of a negligible effect of viscous dissipation and of a vanishing incoming heat flux at the bottom
wall are discussed. The analysis of these special cases reveals that each possible cause of the convective
rolls, bottom heating and viscous heating, can be the unique cause of the instability under appropriate
conditions. In all the cases examined, transverse rolls form the preferred mode of instability.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The analysis of the DarcyeB�enard problem in a horizontal fluid
saturated porous layer is a classical issue of the studies of stability
against thermally-induced convection cells. The importance of the
DarcyeB�enard problem and of its several variants stems from the
link to the conceptually similar RayleigheB�enard problem for
a clear fluid. In practice, the interest in the investigation of
convective instabilities in a fluid saturated porous material heated
from below arises from the several applications either with respect
to geophysics, to the hydrology of groundwater, and to the diffusion
of chemical contaminants in the soil. Awide literature exists on this
subject originated from the pioneering papers by Horton, Rogers [1]
and Lapwood [2]. A subsequent extension of this study is Prats
problem [3], where a basic horizontal throughflow in the porous
layer is assumed, instead of the basic rest state considered in the
papers by Horton, Rogers [1] and Lapwood [2]. Comprehensive
reviews of this subject, accounting for the wide literature available
to date, can be found in Nield and Bejan [4], Rees [5] and Tyvand [6].

Interesting studies about the effect of viscous dissipation on
heat transfer and fluid flow in saturated porous media have been
: þ39 51 644 1747.
etta), leiv.storesletten@uia.no

son SAS. All rights reserved.
published [7e13]. Some of these investigations are devoted to the
modelling of the viscous dissipation contribution in the local
energy balance [9,12,13]. In particular, Nield [9] discusses the
resolution of a paradox arising when both viscous dissipation and
inertial effects occur. Breugem and Rees [12] carry out a rigorous
volume-averaging procedure for the local balance equations under
the assumption of a non negligible viscous dissipation. Several
studies have been carried out on the effects of the viscous heating
in buoyant flows [7,8,10,11]. For a detailed survey of the wide
literature on viscous dissipation in porous media we refer the
reader to the book by Nield and Bejan [4], as well as to the recent
paper by Nield [13].

Quite recently, the effects of viscous dissipation have been
investigated as the possible cause of convective instabilities in
porous media [14e19]. In these papers, a fluid saturated porous
layer with an infinite horizontal width and a finite thickness is
considered. Different flow models and thermal boundary condi-
tions are investigated. Among the cases examined we cite, hori-
zontal basic flow with a bottom adiabatic boundary and a top
boundary subject to a third kind condition [14] or with bottom and
top adiabatic boundaries [15]. The linear instabilities of the basic
horizontal flow of water next to the density maximum state have
been studied [16] and the form-drag effects have been included
[17]. The Prats problem has been revisited by including both the
contributions of viscous dissipation and pressure work in the local
energy balance [18]. The case of a basic vertical throughflow with
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Fig. 1. Drawing of the porous channel.

Nomenclature

a wave number, Eq. (32)
An, Bn dimensionless coefficients, Eq. (37)
c average heat capacity per unit mass
Cm,n, Dm,n dimensionless coefficients, Eq. (50)
Ec Eckert number, Eq. (9)
g gravitational acceleration
g modulus of the gravitational acceleration
Ge Gebhart number, Eq. (9)
H channel height
k average thermal conductivity
K permeability
L channel half-width
m, n integers
Pe P�eclet number, Eq. (19)
q0 bottom wall heat flux
Ra Rayleigh number, Eq. (9)
<fg; Jfg real part, imaginary part
s L/H, aspect ratio
t dimensionless time, Eq. (9)
T dimensionless temperature, Eq. (9)
T0 top wall temperature
u, v, w dimensionless velocity components, Eq. (9)

U, V, W dimensionless velocity disturbances, Eq. (20)
x, y, z dimensionless Cartesian coordinates, Eq. (9)

Greek symbols
a average thermal diffusivity
b volumetric coefficient of thermal expansion
g dimensionless coefficient, Eq. (33)
3 perturbation parameter, Eq. (20)
h, hm Value of B0, Dm,0

q dimensionless temperature disturbance, Eq. (20)
Q(y), Qm(y) dimensionless functions, Eqs. (32) and (46)
l l1 þ il2, complex exponential growth rate
n kinematic viscosity
s ratio between the volumetric heat capacities of the

fluid saturated porous medium and of the fluid
j dimensionless streamfunction, Eqs. (28) and (42)
J(y), Jm(y) dimensionless functions, Eqs. (32) and (46)
U dimensionless parameter, Eq. (54)

Superscript, subscripts
- dimensional quantity
B basic flow
cr critical value
L longitudinal rolls
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viscous dissipation has been considered [19], thus extending the
analysis carried out by Homsy and Sherwood [20]. All these
investigations confirmed that the effect of viscous dissipation may
be the sole cause of the convective instabilities. In other words,
linear instabilities induced by the effect of viscous dissipation term
may arise even in the absence of a heat input across the bottom
boundary. These instabilities are in fact thermoconvective insta-
bilities, although generated internally by the viscous heating and
not by an externally impressed temperature gradient.

The aim of the present paper is to develop the above described
investigation of the role played by the effect of viscous dissipation
on the thermoconvective instabilities in porous media. In the
present study, the effect of a lateral confinement due to adiabatic
vertical boundaries is considered. Reference is made to a porous
channel with an isoflux bottom boundary and an isothermal top
boundary. The critical conditions for the onset of either transverse
or longitudinal rolls are determined both analytically by a power
series method and numerically by a fourth order Runge-Kutta
method.

2. Governing equations

We consider the stability of parallel Darcy flow in a rectangular
horizontal channel filled with a fluid saturated porousmedium. The
channel is bounded above and below by two horizontal walls,
separated by a distance H, and laterally by two vertical walls sepa-
rated by a distance 2L; all walls are impermeable (see Fig. 1). The
components of seepage velocity along the x-; y- and z-directions are
denoted by u, v, and w respectively, where the y-axis is vertical and
the z-axis-axis is directed along the channel. The lower boundary
wall y ¼ 0 is subject to a positive uniform heat flux q0, while the
upper boundary wall y ¼ H is supposed to be isothermal with
temperature T0. Furthermore, the lateral walls x ¼ �L are assumed
to be adiabatic. Both the Darcy model and the Boussinesq approxi-
mation are invoked.

The governing mass, momentum and energy equations can be
expressed as
vuþ vv þ vw ¼ 0; (1)

vx vy vz

vw
vy

� vv

vz
¼ �g b K

n

vT
vz

; (2)

vu
vz

� vw
vx

¼ 0; (3)

vv

vx
� vu

vy
¼ gbK

n

vT
vx

; (4)

s
vT
vt

þu
vT
vx

þv
vT
vy

þw
vT
vz

¼a

 
v2T
vx2

þv2T
vy2

þv2T
vz2

!
þ n

Kc

�
u2þv2þw2�:

(5)

Eqs. (2)e(4) have been obtained by applying the curl operator to
both sides of Darcy's law in order to remove the explicit depen-
dence on the pressure field. In Eq. (5), the dissipation function is
proportional to the square modulus of the seepage velocity [13].
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The velocity and temperature conditions at the boundaries are

v ¼ 0; �k
vT
vy

¼ q0 on y ¼ 0; �L < x < L; (6)

v ¼ 0; T ¼ T0 on y ¼ H; �L < x < L; (7)
u ¼ 0;
vT
vx

¼ 0 on x ¼ � L; 0 < y < H: (8)

As described in the following sections, a forced basic flow
caused by a horizontal pressure gradient is prescribed within the
porous channel. This flow results in a uniform basic velocity profile,
with a seepage velocity of magnitude wB in the z-direction, and
a purely vertical heat flux.

2.1. Dimensionless formulation

We introduce the following dimensionless quantities:

ðx; y; zÞ ¼ ðx; y; zÞH; t ¼ t
sH2

a
; ðu; v;wÞ ¼ ðu; v;wÞ a

H
;

T ¼ T0 þ
q0H
k

T ; Ra ¼ gbKq0H2

kan
; Ge ¼ gbH

c
;

Ec ¼ Ge
Ra

¼ kan
Kc q0H

; (9)

where Ra, Ge and Ec are the DarcyeRayleigh number, Gebhart
number and DarcyeEckert number, respectively.

By employing the dimensionless quantities, Eqs. (1)e(8) can be
written as follows:

vu
vx

þ vv

vy
þ vw

vz
¼ 0; (10)

vw
vy

� vv

vz
¼ � Ra

vT
vz

; (11)

vu
vz

� vw
vx

¼ 0; (12)

vv

vx
� vu

vy
¼ Ra

vT
vx

; (13)

vT
vt

þu
vT
vx

þv
vT
vy

þw
vT
vz

¼ v2T
vx2

þv2T
vy2

þv2T
vz2

þEc
�
u2þv2þw2�; (14)

v ¼ 0;
vT
vy

¼ �1 on y ¼ 0; �s < x < s; (15)

v ¼ 0; T ¼ 0; on y ¼ 1; �s < x < s; (16)

u ¼ 0;
vT
vx

¼ 0 on x ¼ �s; 0 < y < 1; (17)

where s ¼ L/H.

2.2. Basic solution

Under the above described conditions there exists a stationary
flowwith uniform horizontal seepage velocity uB ¼ (uB, vB,wB), and
a purely vertical heat flux. The basic state, which we shall analyse
for stability, is given by

uB ¼ 0; vB ¼ 0; wB ¼ Pe; TB ¼ 1�yþ1
2
EcPe2

�
1�y2

�
; (18)

where Pe is the P�eclet number defined by
Pe ¼ wBH
a

; (19)

and wB is the dimensional basic seepage velocity component in
the z-direction. Obviously, it is not restrictive to assume that
wB > 0, i.e. Pe > 0.

2.3. Linearisation

Perturbations of the basic state given by Eq. (18) are given as

u ¼ uBþ 3U; v ¼ vBþ 3V ; w ¼ wBþ 3W; T ¼ TBþ 3q; (20)

where 3 is a very small perturbation parameter. On substituting
Eq. (20) in Eqs. (10)e(17) and neglecting nonlinear terms of order
32, we obtain the linearised stability equations,

vU
vx

þ vV
vy

þ vW
vz

¼ 0; (21)

vW
vy

� vV
vz

¼ �Ra
vq

vz
; (22)

vU
vz

� vW
vx

¼ 0; (23)

vV
vx

� vU
vy

¼ Ra
vq

vx
; (24)

vq

vt
þPe

vq

vz
��EcPe2yþ1

�
V ¼ v2q

vx2
þv2q

vy2
þv2q

vz2
þ2EcPeW; (25)

V ¼ 0;
vq

vy
¼ 0 on y ¼ 0; �s < x < s;

V ¼ 0; q ¼ 0 on y ¼ 1; �s < x < s;

U ¼ 0;
vq

vx
¼ 0 on x ¼ �s; 0 < y < 1;

(26)

where Eq. (18) is employed. The linearity of Eqs. (21)e(26) implies
that, due to the superposition property, one may treat rolls of
different orientations separately with regard to instability. An
advantage is that each of these cases can be dealt with by using
a purely 2D treatment.

3. Instability with respect to rolls

Solutions of the disturbance equations (21)e(26) are sought
in the form of periodic rolls. Due to the lateral boundaries,
only two kinds of convection rolls can exist: rolls parallel to
the z-axis, hereafter referred to as longitudinal rolls, and rolls
orthogonal to the z-axis, hereafter referred to as transverse
rolls.

3.1. Transverse rolls

Let us first examine transverse rolls, i.e. horizontal rolls with
axes along the x-direction. Then, the analysis of the linear distur-
bances become two-dimensional with

U ¼ 0; V ¼ Vðy;z;tÞ; W ¼ Wðy;z; tÞ; q ¼ qðy;z; tÞ: (27)

On introducing a streamfunction, j, such that
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W ¼ vj

vy
; V ¼ � vj

vz
; (28)

then Eqs. (21), (23), and (24) are satisfied identically, while Eqs. (22)
and (25) can be rewritten in the form

v2j

vy2
þ v2j

vz2
þ Ra

vq

vz
¼ 0; (29)

vq

vt
þ Pe

vq

vz
þ �EcPe2yþ 1

�vj
vz

¼ v2q

vy2
þ v2q

vz2
þ 2EcPe

vj

vy
: (30)

The corresponding boundary conditions are deduced from Eq. (26),
namely

vj

vz
¼ 0;

vq

vy
¼ 0 on y ¼ 0; �s < x < s;

vj

vz
¼ 0; q ¼ 0 on y ¼ 1; �s < x < s:

(31)

Solutions of Eqs. (29)e(31) are sought in the form of plane waves,

jðy;z;tÞ ¼ <
n
iJðyÞelteiaz

o
; qðy;z;tÞ ¼ <

n
QðyÞelteiaz

o
; (32)

where the positive real constant a is the wave number, while
l ¼ l1 þ il2 is a complex exponential growth rate to be determined.
We set l1 ¼ 0 in order to investigate neutral stability. Moreover, for
numerical convenience we shall also set,

g ¼ l2 þ aPe: (33)

By substituting Eq. (32) in Eqs. (29) and (30), we obtain

J00 � a2Jþ aRaQ ¼ 0; (34)

Q00 � �igþ a2
�
Qþ 2iEcPeJ0 þ a

�
EcPe2yþ 1

�
J ¼ 0; (35)

where the primes denote differentiation with respect to y.
The boundary conditions for J and Q are easily deduced from

Eqs. (31) and (32), namely

J ¼ 0; Q0 ¼ 0 on y ¼ 0;
J ¼ 0; Q ¼ 0 on y ¼ 1:

(36)

The present stability analysis is based on the ordinary differential
equations (34) and (35), subject to the boundary conditions (36).

3.1.1. Series solution
Eqs. (34)e(36) can be solved through a power series method by

expressing

JðyÞ ¼
XN
n¼0

An

n!
yn; QðyÞ ¼

XN
n¼0

Bn
n!

yn: (37)

The homogeneity of Eqs. (34)e(36) implies that J(y) is defined
only up to an arbitrary overall scale factor, which means that we
may set J0(0) ¼ 1 as a normalization condition. The three known
(complex) initial conditions are then

A0 ¼ Jð0Þ ¼ 0; A1 ¼ J0ð0Þ ¼ 1; B1 ¼ Q0ð0Þ ¼ 0; (38)

while B0 ¼Q(0)¼ hwill need to be obtained by using the boundary
conditions at y¼ 1, Eq. (36). Higher order coefficients An and Bnmay
be determined by substituting Eq. (37) into Eqs. (34) and (35) and
collecting like powers of y. We thus obtain
A2 ¼ �aRah; B2 ¼ �
igþ a2

�
h� 2iEcPe; (39)
and the recurrence relations

Anþ2 ¼ a2An�aRaBn;

Bnþ2 ¼
�
igþa2

�
Bn�2iEcPeAnþ1

�aAn�aEcPe2nAn�1; n¼ 1;2;3;. (40)

3.2. Longitudinal rolls

Longitudinal rolls, with axes parallel to the z-direction, are
directed along the rectangular channel. The linear disturbances
become two-dimensional in this case as well, with

U ¼ Uðx;y;tÞ; V ¼ Vðx;y;tÞ; W ¼ 0; q¼ qðx;y;tÞ (41)

On introducing a streamfunction, j, such that

U ¼ vj

vy
; V ¼ � vj

vx
; (42)

then Eqs. (21)e(23) are satisfied identically, while Eqs. (24) and
(25) can be written in the form

v2j

vx2
þ v2j

vy2
þ Ra

vq

vx
¼ 0; (43)

vq

vt
þ �EcPe2yþ 1

�vj
vx

¼ v2q

vx2
þ v2q

vy2
: (44)

The corresponding boundary conditions deduced from Eq. (26) are

j ¼ 0;
vq

vy
¼ 0 on y ¼ 0; �s < x < s;

j ¼ 0; q ¼ 0 on y ¼ 1; �s < x < s;

j ¼ 0;
vq

vx
¼ 0 on x ¼ �s; 0 < y < 1:

(45)

Steady solutions of Eqs. (43)e(45), corresponding to neutral
stability, have the following form:

ðx; yÞ ¼ JmðyÞsin
hmp

2

�x
s
þ 1
�i

;

qðx; yÞ ¼ �QmðyÞcos
hmp

2

�x
s
þ 1

�i
; m ¼ 1;2;3;. (46)

Eq. (46) substituted into Eqs. (43)e(45) yields the ordinary differ-
ential equations

J00
m �

�mp
2s

�2
Jm þmp

2s
RaQm ¼ 0; (47)

Q00
m�

�mp
2s

�2
Qmþmp

2s
ðEcPe2yþ1

�
Jm ¼ 0; m¼ 1;2;3;.; (48)

subject to the boundary conditions

jmð0Þ ¼ jmð1Þ ¼ 0; Q0
mð0Þ ¼ Qmð1Þ ¼ 0: (49)

3.2.1. Series solutions
Eqs. (47) and (48) subject to the boundary conditions (49) can be

solved by a power series method expressing

JmðyÞ ¼
XN
n¼0

Cm;n

n!
yn; QmðyÞ ¼

XN
n¼0

Dm;n

n!
yn: (50)



Table 1
Transverse rolls: neutral stability values of Ra and g with U ¼ 40 and Pe ¼ 10.
Comparison between the series solution and the Runge-Kutta solution.

Method a ¼ 1 a ¼ 2 a ¼ 3

Ra g Ra g Ra g

Series,
N ¼ 10

30.634985 0.703004 10.497103 0.804620 11.383059 e 0.754542

Series,
N ¼ 15

30.550923 0.711722 10.071665 0.981118 10.635659 0.861900

Series,
N ¼ 20

30.550835 0.711732 10.070433 0.982201 10.655979 0.878759

Series,
N ¼ 25

30.550835 0.711732 10.070433 0.982203 10.656137 0.878788

Series,
N ¼ 30

30.550835 0.711732 10.070433 0.982203 10.656137 0.878788

Runge-
Kutta

30.550835 0.711732 10.070433 0.982203 10.656137 0.878788
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The homogeneity of Eqs. (47)e(49) implies that Jm and Qm are
defined only up to an arbitrary overall scale factor, whichmeans that
we may set J0

m(0) ¼ 1. The three known initial conditions are then

Cm;0 ¼Jmð0Þ ¼ 0; Cm;1 ¼J0
mð0Þ ¼ 1; Dm;1 ¼Q0

mð0Þ ¼ 0; (51)

while Dm,0 ¼ Qm(0) ¼ hm will need to be obtained by using the
boundary conditions at y¼ 1, Eq. (49). Higher order coefficients Cm,n
and Dm,n may be determined by substituting Eq. (50) into Eqs. (47)
and (48) and collecting like powers of y. We thus obtain

Cm;2 ¼ �mp
2s

Rahm; Dm;2 ¼
�mp

2s

�2
hm; (52)

and the recurrence relations

Cm;nþ2 ¼
�mp

2s

�2
Cm;n�mp

2s
RaDm;n;

Dm;nþ2 ¼
�mp

2s

�2
Dm;n�mp

2s
�
Cm;nþEcPe2nCm;n�1

�
; n¼ 1;2;3;.

(53)

4. Discussion of the results

4.1. Transverse rolls

In addition to the series solution discussed in Section 3.1.1,
Eqs. (34)e(36) can be solved numerically by adopting an explicit
Runge-Kutta method. The numerical procedure can be easily set up
by using the software package Mathematica 7.0 (� Wolfram, Inc.).
The explicit Runge-Kutta method is available through the built-in
function NDSolve setting the Method option to ExplicitRungeKutta.
Eqs. (34)e(36) are solved as an eigenvalue problem for assigned
values of a, Pe and of the parameter

U ¼ GePe2: (54)

The reason for using U instead of Ge as an input parameter is the
existence of a special regime where U w O(1) and Pe / N. This
regime is such that the eigenvalue problem for transverse rolls can
bemade self-adjoint. A detailed analysis of this case can be found in
the following Section 4.1.1. We note that the parameter U is used as
the governing parameter for the study of linear stability in Barletta
et al. [14].

For convenience, Eqs. (34) and (35) are rewritten as

J00 � a2Jþ aRaQ ¼ 0; (55)

Q00 � �igþ a2
�
Qþ 2iU

PeRa
J0 þ a

�
U

Ra
yþ 1

�
J ¼ 0; (56)

where the relationship Ec ¼ Ge/Ra, Eq. (9), has been used. These
equations are solved with the initial conditions

Jð0Þ ¼ 0; J0ð0Þ ¼ 1; Qð0Þ ¼ h1þ ih2; Q0ð0Þ ¼ 0; (57)

discussed in Section 3.1.1. Here, h1 and h2 are the real part and the
imaginary part of h. The real eigenvalues Ra, g, h1 and h2 are
determined by solving numerically the complex constraint
equations

Jð1Þ ¼ 0; Qð1Þ ¼ 0: (58)

This is achieved in Mathematica 7.0 by means of the built-in func-
tion FindRoot. As a is prescribed, the eigenvalue Ra is a function of a,
Ra(a). On minimizing this function, one determines the critical
values acr, Racr and gcr for any assigned pair (U, Pe).
We point out that the four real unknowns h1, h2, Ra and g are not
uniquely determined by solving the four real algebraic equations
<fJð1Þg ¼ 0, JfJð1Þ ¼ 0g , <fQð1Þ ¼ 0g and JfQð1Þ ¼ 0g for
assigned a, U, Pe. In fact, there are infinite neutral stability curves
that may exist in the parametric space (a, Ra) for a given pair (U, Pe),
corresponding either to the lowest mode of instability or to the
higher modes. This is a well known feature of the linear analyses of
thermoconvective instability examined in several surveys on this
subject (see for instance Nield and Bejan [4], Chapter 6). In the
present discussion, the higher modes of instability are not studied
as our aim is determining the critical conditions for the onset of
convective rolls. This objective is achieved just by considering the
lowest neutral stability mode.

A comparison between the series solution discussed in Section
3.1.1, truncated to the first N terms, and the explicit Runge-Kutta
solution is displayed in Table 1. These data refer to the neutral
stability functions Ra(a) and g(a) for U ¼ 40 and Pe ¼ 10. Three
sample wave numbers a¼ 1, a¼ 2 and a¼ 3 are considered. Table 1
shows that, with increasing N, the series solution results rapidly
converge to the Runge-Kutta method results. The agreement is
perfect even with N ¼ 25.

We mention that special limiting cases of Eqs. (55) and (56) can
be defined.

4.1.1. Limit Pe / N

By assuming U w O(1) and Ra w O(1), Eqs. (55) and (56) can be
easily simplified in the limit Pe/N. SinceU is kept finite, this limit
is in fact a double limit: Pe / N and Ge / 0. The only explicitly
imaginary contribution is the ig term in Eq. (56), so that one can
solve the eigenvalue problem by setting g ¼ 0 and h2 ¼ 0. Then, the
eigenvalue problem becomes self-adjoint and Eqs. (55)e(57) can be
expressed as

J00 � a2Jþ aRaQ ¼ 0; (59)

Q00 � a2Qþ a
�
U

Ra
yþ 1

�
J ¼ 0; (60)

Jð0Þ ¼ 0; J0ð0Þ ¼ 1; Qð0Þ ¼ h1; Q0ð0Þ ¼ 0; (61)

where, since the problem is self-adjoint, the eigenfunctions J and
Q are now real-valued.

4.1.2. Limit U / 0
Another limiting case is obtainedbyassuming PewO(1),RawO(1)

and letting U / 0. This limit has a direct physical significance as it
correspondstoGe/0, i.e. toanegligibleeffectofviscousdissipation. In
this limit, Eqs. (55)e(57) yield
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J00 � a2Jþ aRaQ ¼ 0; (62)
Q00 � a2Qþ aJ ¼ 0; (63)

Jð0Þ ¼ 0; J0ð0Þ ¼ 1; Qð0Þ ¼ h1; Q0ð0Þ ¼ 0: (64)

Again the problem is made self-adjoint by setting g ¼ 0 and h2 ¼ 0.
The critical values acr, Racr are independent of any other parameter
and are given by

acr ¼ 2:326215; Racr ¼ 27:097628: (65)

These are the critical values obtained for the DarcyeB�enard
problem without viscous dissipation, for bottom impermeable
isoflux boundary and top impermeable isothermal boundary, dis-
cussed in Rees [5].

4.1.3. Limit Ra / 0
By taking Ra / 0 with U w O(1) and Pe w O(1), one considers

the very special case of an adiabatic bottom boundary ðq0/0Þ. This
case has been diffusely studied in Barletta et al. [14]. The limit
Ra / 0 can be taken in Eqs. (55) and (57) after the rescaling:

RaQ/Q; Rah/h: (66)

Then, one obtains

J00 � a2Jþ aQ ¼ 0; (67)

Q00 � �igþ a2
�
Qþ 2iU

Pe
J0 þ aUyJ ¼ 0; (68)

Jð0Þ ¼ 0; J0ð0Þ ¼ 1; Qð0Þ ¼ h1þ ih2; Q0ð0Þ ¼ 0: (69)

In this case, the problem is not self-adjoint. Moreover, it must be
formulated in a special way as the eigenvalue Ra has disappeared.
In fact, one prescribes a and Pe and determines the eigenvaluesU, g,
h1 and h2 by solving the constraint conditions Eq. (58). One may
note that Eqs. (67)e(69) yield a self-adjoint problemwhen Pe/N.
Then, in this limit, one has g ¼ 0, h2 ¼ 0 and the critical values of
a and U are given by

acr ¼ 2:44827; Ucr ¼ 61:8666: (70)
Table 2
Transverse rolls: critical values of a, Ra and g.

U Pe / N Pe ¼ 100

acr Racr gcr acr

0 2.3262 27.098 0 2.3262
10�8 2.3262 27.098 0 2.3262
10�4 2.3262 27.098 0 2.3262
0.001 2.3262 27.097 0 2.3262
0.01 2.3262 27.093 0 2.3262
0.1 2.3263 27.055 0 2.3263
1 2.3272 26.671 0 2.3272
2 2.3282 26.245 0 2.3282
5 2.3315 24.963 0 2.3315
10 2.3375 22.819 0 2.3375
15 2.3442 20.666 0 2.3442
20 2.3517 18.503 0 2.3517
25 2.3600 16.331 0 2.3599
30 2.3691 14.149 0 2.3690
35 2.3790 11.957 0 2.3789
40 2.3899 9.7554 0 2.3897
45 2.4016 7.5430 0 2.4014
50 2.4143 5.3199 0 2.4140
55 2.4279 3.0860 0 2.4276
These results are in perfect agreement with those reported in
Barletta et al. [14].

4.1.4. Critical values
Tables 2 and 3 include the critical values of a, Ra and g obtained

fordifferentpairs ðU; PeÞ. The values in the column Pe/N inTable 2
are obtained by solving the self-adjoint eigenvalue problem Eqs.
(59)e(61). The values in the lineU/0 inTables 2 and3 areobtained
bysolving the self-adjoint eigenvalue problemEqs. (62)e(64). These
results are independent of Pe aswehave pointed out in Section 4.1.2.
The data reported in Tables 2 and 3 justify the assumption g ¼ 0
introduced in Section 4.1.1 for the limiting case Pe/ N. In fact, for
a fixed value of U, one may see from these tables that g approaches
continuously 0 when Pe increases and tends to infinity. A similar
reasoning holds for the assumption g¼ 0 introduced in Section 4.1.2
for the limiting case U / 0.

Tables 2 and 3 show that Racr is a decreasing function of U for
a fixed Pe and an increasing function of Pe for a fixed U. The former
feature can be interpreted physically as the destabilizing effect of
the viscous dissipation. This destabilizing effect can be so intense
that Racr may drop to zero for a sufficiently high value of U. Tables 2
and 3 suggest that the critical value of U leading to Racr ¼ 0 is
greater than 55 for Pe ¼ 5, 10, 100, and N, is greater than 40 for
Pe ¼ 2 and is greater than 25 for Pe ¼ 1. For the case Ra ¼ 0, precise
values of Ucr, as well as of the corresponding values of acr and gcr,
are given in Table 4 for different P�eclet numbers. Both acr andUcr are
increasing functions of Pe, that attain the asymptotic values given
by Eq. (70) when Pe/N. Tables 2 and 3 also reveal that the critical
wave number, acr, is a monotonic function of U for a fixed Pe ¼ 10,
100,N, but not for Pe ¼ 1, 2, 5. More precisely, in the latter case, acr
initially increases with U, reaches a maximum and then decreases.

The neutral stability curves for the case U ¼ 20 are displayed in
Fig. 2 for five different values of Pe. Furthermore, the effect of
increasing values of U for Pe ¼ 2 is illustrated in Fig. 3. Increasing
values of U for a fixed P�eclet number correspond to an increasing
contribution of the frictional heating. Then, Fig. 3 confirms the
destabilizing role played by the viscous dissipation.

4.2. Longitudinal rolls

The analysis of stability against longitudinal rolls differs from
that against transverse rolls for the discrete spectrum of wave
numbers,
Pe ¼ 10

Racr gcr acr Racr gcr

27.098 0 2.3262 27.098 0
27.098 0.0000 2.3262 27.098 0.0000
27.098 0.0000 2.3262 27.098 0.0000
27.097 0.0000 2.3262 27.097 0.0000
27.093 0.0000 2.3262 27.093 0.0003
27.055 0.0003 2.3263 27.055 0.0026
26.671 0.0025 2.3272 26.671 0.0255
26.245 0.0051 2.3282 26.244 0.0509
24.963 0.0127 2.3312 24.957 0.1269
22.819 0.0253 2.3365 22.797 0.2525
20.665 0.0377 2.3420 20.617 0.3767
18.503 0.0500 2.3477 18.416 0.4994
16.330 0.0621 2.3537 16.196 0.6204
14.147 0.0740 2.3599 13.955 0.7396
11.955 0.0858 2.3665 11.695 0.8570
9.7520 0.0973 2.3733 9.4149 0.9724
7.5387 0.1087 2.3805 7.1153 1.0856
5.3147 0.1198 2.3880 4.7962 1.1966
3.0798 0.1306 2.3958 2.4576 1.3051



Table 3
Transverse rolls: critical values of a, Ra and g.

U Pe ¼ 5 Pe ¼ 2 Pe ¼ 1

acr Racr gcr acr Racr gcr acr Racr gcr

0 2.3262 27.098 0 2.3262 27.098 0 2.3262 27.098 0
10�8 2.3262 27.098 0.0000 2.3262 27.098 0.0000 2.3262 27.098 0.0000
10�4 2.3262 27.098 0.0000 2.3262 27.098 0.0000 2.3262 27.098 0.0000
0.001 2.3262 27.097 0.0001 2.3262 27.097 0.0001 2.3262 27.097 0.0003
0.01 2.3262 27.093 0.0005 2.3262 27.093 0.0013 2.3262 27.093 0.0026
0.1 2.3263 27.055 0.0051 2.3263 27.055 0.0128 2.3263 27.055 0.0255
1 2.3272 26.671 0.0510 2.3270 26.666 0.1274 2.3262 26.649 0.2548
2 2.3281 26.241 0.1018 2.3273 26.223 0.2546 2.3243 26.156 0.5089
5 2.3305 24.941 0.2538 2.3254 24.824 0.6341 2.3073 24.407 1.2648
10 2.3335 22.731 0.5049 2.3131 22.266 1.2586 2.2435 20.598 2.4903
15 2.3353 20.468 0.7528 2.2898 19.426 1.8705 2.1436 15.663 3.6486
20 2.3358 18.153 0.9974 2.2560 16.305 2.4670 2.0203 9.5893 4.7112
25 2.3350 15.788 1.2383 2.2130 12.906 3.0455 1.8870 2.3618 5.6553
30 2.3329 13.371 1.4753 2.1620 9.2267 3.6033 e e e

35 2.3296 10.904 1.7083 2.1045 5.2679 4.1377 e e e

40 2.3250 8.3883 1.9372 2.0422 1.0283 4.6462 e e e

45 2.3192 5.8237 2.1617 e e e e e e

50 2.3122 3.2112 2.3819 e e e e e e

55 2.3040 0.55132 2.5977 e e e e e e
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a ¼ mp
2s

; m ¼ 1;2;3;. (71)
This is a consequence of the lateral confinement. However, if we
span all the possible aspect ratios s, then the wave number a can
assume any positive real value. Then, by introducing the dimen-
sionless parameter U defined by Eq. (54) in Eqs. (47)e(49), these
equations and the initial conditions discussed in Section 3.2.1 form
the initial value problem

J00
m � a2Jm þ aRaQm ¼ 0; (72)

Q00
m � a2Qm þ a

�
U

Ra
yþ 1

�
Jm ¼ 0; (73)

Jmð0Þ ¼ 0; J0
mð0Þ ¼ 1; Qmð0Þ ¼ hm; Q0

mð0Þ ¼ 0; (74)

subject to the constraint equations

Jmð1Þ ¼ 0; Qmð1Þ ¼ 0: (75)

We note that a comparison between Eqs. (59)e(61) and Eqs. (72)e
(74) reveals that the two initial value problems are formally
Table 4
Transverse rolls with Ra ¼ 0: critical values of a, U and g.

Pe acr Ucr gcr

0.5 1.7437 15.085 6.5362
0.75 1.7962 21.195 6.2212
1 1.8472 26.480 5.9102
1.5 1.9427 34.943 5.3118
2 2.0271 41.165 4.7607
3 2.1584 49.088 3.8384
4 2.2456 53.470 3.1490
5 2.3022 56.026 2.6415
6 2.3394 57.606 2.2624
7 2.3646 58.638 1.9727
8 2.3822 59.343 1.7457
9 2.3950 59.843 1.5640
10 2.4044 60.210 1.4156
20 2.4367 61.438 0.7209
50 2.4464 61.797 0.2899
100 2.4478 61.849 0.1450
1000 2.4483 61.866 0.0145
104 2.4483 61.867 0.0015
N 2.4483 61.867 0
coincident. Then, we can infer that, for every assigned U, the critical
values acr(U) and Racr(U) are those obtained for transverse rolls in
the limiting case Pe / N and reported in the first column of Table
2. As a consequence of Eq. (71), for every prescribed value of U,
there exists a discrete sequence of corresponding critical values of s,
defined by all the integer multiples of

scrðUÞ ¼ p
2acrðUÞ: (76)

The value of scr is a function of U, as acr(U) is the critical wave
number obtained for the assigned value of U. For a given pair (s, U),
the minimum Rayleigh number for neutral stability against longi-
tudinal rolls represents the critical Rayleigh number, Racr,L(s, U). We
can determine Racr,L(s, U) by seeking the minimum over the
different integersm of the eigenvalue Ra for the problem Eqs. (72)e
(75) with a expressed by Eq. (71). If, for a given U, the aspect ratio s
is not an integer multiple of scr(U), then the value of Racr, L(s, U) for
neutral stability against longitudinal rolls is greater than Racr(U). In
other words,

Racr;Lðs;UÞ � RacrðUÞ; (77)

where the equality holds if and only if s is an integer multiple of
scr(U).
1 2 3 4 5

10

15

20

25

30

35

40

a

Ra

100Pe
2Pe

1.3Pe

1Pe

20

Fig. 2. Transverse rolls; neutral stability curves for U ¼ 20.
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Fig. 3. Transverse rolls; neutral stability curves for Pe ¼ 2.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

15

20

25

s

,
cr

L
R

a

1m 2m 3m 4m 5m

Fig. 6. Longitudinal rolls; plot of Racr,L(s, U) versus s for U ¼ 30, where
scr(U) ¼ 0.663036; the dashed line corresponds to Racr(U) ¼ 14.1493.
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As it has beenpointed out in Section 4.1.4, for transverse rolls, the
critical Rayleigh number is an increasing function of Pe for a fixedU.
Thismeans that, for afixedU, the highest critical Rayleigh number is
obtained in the limit Pe / N, i.e. the quantity Racr(U). From this
reasoning and from Eq. (77), one can infer that the preferred mode
of instability is transverse rolls. Instability to transverse rolls and
instability to longitudinal rolls may become equivalent in the limit
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Fig. 4. Longitudinal rolls; plot of scr versus U.
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Fig. 5. Longitudinal rolls; plot of Racr,L(s, U) versus s for U ¼ 10�6, where
scr(U) ¼ 0.675259; the dashed line corresponds to Racr(U) ¼ 27.0976.
Pe/N, whenever s coincides with integer multiples of the special
critical values defined by Eq. (76). Tables 2 and 3 reveal that insta-
bilities may lead equivalently to the onset of transverse or longi-
tudinal rolls also in the limiting case U/ 0 as in this case we loose
the dependence on Pe. The equivalence between the transverse and
the longitudinal rolls is ensured in this limit only if
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Fig. 7. Longitudinal rolls; plot of Racr,L(s, U) versus s for U ¼ 50, where
scr(U) ¼ 0.650634; the dashed line corresponds to Racr(U) ¼ 5.31993.
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Fig. 8. Longitudinal rolls with Ra ¼ 0; plot of Ucr,L(s) versus s; the dashed line corre-
sponds to Ucr ¼ 61.8666.



Fig. 9. Onset of convection for the case Ra ¼ 0 with Pe ¼ 10 and s ¼ 1/2: streamlines j ¼ constant (solid lines) and isotherms q ¼ constant (dashed lines) with transverse rolls
(a ¼ 2.40443, U ¼ 60.2103, t ¼ 0) and with longitudinal rolls (a ¼ p, U ¼ 64.8682).
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s¼mscrð0Þ ¼ mp
2acrð0Þ ¼ 0:675259m; m¼ 1;2;3;. (78)
Fig. 4 displays the plot of scr(U). Wemention that this function is
defined, on account of Eq. (70), in the interval 0 < U � Ucr. In fact,
outside this interval, the flow system becomes unstable even with
a vanishing heat flux at the bottom boundary. Fig. 4 shows that
scr(U) is a monotonic weakly-decreasing function of U.

Figs. 5e7 illustrate the behaviour of Racr,L(s, U) versus s for three
different values of U: 10�6, 30 and 50. There is a common qualita-
tive feature of these three figures. The plots display a sequence of
local minima where s is an integer multiple of scr(U) and, as
a consequence of Eq. (77), Racr,L(s, U) ¼ Racr(U). As s increases,
different m-modes yield the lowest critical Rayleigh number. A
transition from each m-mode to the (m þ 1)-mode occurs in
Figs. 5e7 at the cusp points.

The critical values of the Rayleigh number for the onset
of longitudinal rolls define the function Racr,L(s, U). For a given s,
Racr,L(s, U) is a monotonic decreasing function of U such that, for
a certain threshold value U ¼ Ucr,L(s), the critical Rayleigh number
becomes zero. A similar feature has been described for transverse
rolls in Section 4.1.3. Then, U ¼ Ucr,L(s) is the root of the algebraic
equation

Racr;Lðs;UÞ ¼ 0: (79)

As a consequence of Eqs. (70) and (76), Ucr,L(s)� 61.8666, where the
equality holds only if s is an integer multiple of scr¼ 0.641595. Fig. 8
illustrates the behaviour of function Ucr,L(s). One can easily
conclude that the qualitative form of the plot is rather similar to
Figs. 5e7, with the same interpretation of the cusp points. Fig. 8
provides a description of the critical conditions for the onset of
longitudinal rolls when the heat flux at the bottom boundary
becomes zero, namely when Ra / 0.

Fig. 9 displays the streamlines j ¼ constant and the isotherms
q¼ constant at the onset of either transverse roll or longitudinal roll
instability, for the sample case Ra ¼ 0, Pe ¼ 10 and s ¼ 1/2. This
sample case is onewhere the convective instability is activated only
by the action of the viscous dissipation effect, since no heat flux is
supplied at the bottom boundary (Ra ¼ 0). For this case, instability
to transverse rolls occurs when a ¼ 2.40443 and U ¼ 60.2103.
Transverse rolls travel in the z-direction (l2 s 0), so that the left
frame of Fig. 9 is referred to t ¼ 0. On the other hand, longitudinal
rolls at neutral stability conditions, a ¼ p and U ¼ 64.8682, are
time-independent. Fig. 9 illustrates the qualitative features of the
convection cells for transverse and longitudinal rolls. The main
difference between the two cells is the evident bending of the
transverse roll in the streamwise direction.
5. Conclusions

The onset of convective roll instabilities has been investigated
for a horizontal porous channel bounded by an isoflux bottomwall,
a top isothermal wall and two vertical adiabatic boundaries. A basic
horizontal flow has been assumed and the effect of viscous dissi-
pation has been taken into account. The most significant results
obtained are resumed below.

1. The governing parameters are the Gebhart number, the P�eclet
number and the Rayleigh number, as well as the aspect ratio of
the rectangular cross-section. A vanishingly small Gebhart
number yields the limiting case of no viscous dissipation, while
a vanishingly small Rayleigh number corresponds to an adia-
batic bottom boundary.

2. If, for a given P�eclet number, the Gebhart number increases,
then the critical Rayleigh number for the onset of transverse
rolls decreases and eventually becomes zero, for a sufficiently
high Gebhart number. In this regime, the thermoconvective
instabilities are purely induced by the contribution of the
internal viscous heating.

3. The preferred mode of instability is transverse rolls. The critical
Rayleigh number for the onset of longitudinal rolls is generally
higher than that for transverse rolls and depends on the aspect
ratio of the rectangular cross-section. In the limiting case of
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a very large P�eclet number and for special values of the channel
aspect ratio, the critical values of the Rayleigh number against
transverse and longitudinal rolls may be coincident.

This special flow problem is one of the many that may be of
interest either for engineering or for geophysics and astrophysics.
In fact, the basic feature of the heating from below and the
concurrent effect of the frictional heating associated with the basic
flow characterise this problem as an instance of a wide class of
similar problems. We mention that other possible assignments of
the thermal boundary conditions may be considered leading to
a heating from below. One can assume an isothermal bottom
boundary with a temperature higher than the top boundary, or one
can assume a convective heating of the bottom surface through
a boundary condition of the third kind. Thus, the subject of ther-
moconvective instabilities with viscous dissipation in fluid satu-
rated porous media offers interesting opportunities for future
research.
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